Exploring the efficacy of GRU model in classifying the signal to noise ratio of microgrid model

Author:

Alsulami Abdulaziz A.,Abu Al-Haija Qasem,Alturki Badraddin,Alqahtani Ali,Binzagr Faisal,Alghamdi Bandar,Alsemmeari Rayan A.

Abstract

AbstractMicrogrids are small-scale energy system that supplies power to homes, businesses, and industries. Microgrids can be considered as a trending technology in energy fields due to their power to supply reliable and sustainable energy. Microgrids have a mode called the island, in this mode, microgrids are disconnected from the major grid and keep providing energy in the situation of an energy outage. Therefore, they help the main grid during peak energy demand times. The microgrids can be connected to the network, which is called networked microgrids. It is possible to have flexible energy resources by using their enhanced energy management systems. However, connection microgrid systems to the communication network introduces various challenges, including increased in systems complicity and noise interference. Integrating network communication into a microgrid system causes the system to be susceptible to noise, potentially disrupting the critical control signals that ensure smooth operation. Therefore, there is a need for predicting noise caused by communication network to ensure the operation stability of microgrids. In addition, there is a need for a simulation model that includes communication network and can generate noise to simulate real scenarios. This paper proposes a classifying model named Noise Classification Simulation Model (NCSM) that exploits the potential of deep learning to predict noise levels by classifying the values of signal-to-noise ratio (SNR) in real-time network traffic of microgrid system. This is accomplished by initially applying Gaussian white noise into the data that is generated by microgrid model. Then, the data has noise and data without noise is transmitted through serial communication to simulate real world scenario. At the end, a Gated Recurrent Unit (GRU) model is implemented to predict SNR values for the network traffic data. Our findings show that the proposed model produced promising results in predicting noise. In addition, the classification performance of the proposed model is compared with well-known machine learning models and according to the experimental results, our proposed model has noticeable performance, which achieved 99.96% classification accuracy.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3