Abstract
The optimal predictive, preventive, corrective and opportunistic maintenance policies play an important role in the success of sustainable maintenance operations. This study discusses a new energy efficiency-related maintenance policy optimization method, which is based on failure data and status information from both the physical system and the digital twin-based discrete event simulation. The study presents the functional model, the mathematical model and the solution algorithm. The maintenance optimization method proposed in this paper is made up of four main phases: computation of energy consumption based on the levelized cost of energy, computation of GHG emission, computation of value determination equations and application of the Howard’s policy iteration techniques. The approach was tested with a scenario analysis, where different electricity generation sources were taken into consideration. The computational results validated the optimization method and show that optimized maintenance policies can lead to an average of 38% cost reduction regarding energy consumption related costs. Practical implications of the proposed model and method regard the possibility of finding optimal maintenance policies that can affect the energy consumption and emissions from the operation and maintenance of manufacturing systems.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献