Maintenance optimization for a multi-unit system with digital twin simulation

Author:

Savolainen JyrkiORCID,Urbani MicheleORCID

Abstract

AbstractOptimization of operations and maintenance (O&M) in the industry is a topic that has been largely studied in the literature. Many authors focused on reliability-based approaches to optimize O&M, but little attention has been given to study the influence of macroeconomic variables on the long-term maintenance policy. This work aims to optimize time-based maintenance (TBM) policy in the mining industry. The mine environment is reproduced employing a virtual model that resembles a digital twin (DT) of the system. The effect of maintenance decisions is replicated by a discrete event simulation (DES), whereas a model of the financial operability of the mine is realized through System Dynamics (SD). The simultaneous use of DES and the SD allows us to reproduce the environment with high-fidelity and to minimize the cost of O&M. The selected illustrative case example demonstrates that the proposed approach is feasible. The issues of using high dimensional simulation data from DT-models in managerial decision making is identified and discussed.

Funder

Strategic Research Council

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering,Software

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3