Mining Subsidence Prediction Model and Parameters Inversion in Mountainous Areas

Author:

Zhou BangORCID,Yan YueguanORCID,Dai Huayang,Kang Jianrong,Xie Xinyu,Pei Zhimiao

Abstract

Coal mining in mountainous areas is general in China, especially in Shanxi Province. Under the influence of topography in mountainous areas, surface collapses and landslides caused by underground mining happen at a certain frequency and threaten human lives and assets. Accurate prediction of the movement and deformation of mining subsidence in mountainous areas facilitates the prevention and control of geological disasters. The probability integral method is an official prediction method for mining subsidence prediction in China, while it is lacking in the prediction accuracy in mountainous areas due to the inherent topography. Therefore, a practical prediction model based on slopes slip combined parameters optimization was proposed in this study. The slip subsidence and slip horizontal movement were deduced based on the probability integral method considering the topography (slope angle α < 30°) and geological conditions (loess covered) to build the prediction model. The dynamic step fruit fly optimization algorithm (DSFOA) was applied for parameters inversion about the probability integral method in the proposed prediction model, while the other parameters in the proposed model were determined by mechanics analysis based on the nature of losses. The determination of parameters is more efficient, objective and reasonable, so that the prediction accuracy can be improved. The measured data of the working panel 22,101 located in Taiyuan, Shanxi Province was verified by this practical model, and the result shows that the mean square error of subsidence and the horizontal movement was decreased to 71 mm and 276 mm, respectively, hence, the applicability of the proposed mining subsidence prediction model in mountainous areas is verified. This work will contribute to a comprehensive understanding on the law of surface movement and provide theoretical guidance for surface damage prevention and control in mountainous mining areas.

Funder

National Natural Science Foundation of China

the Fundamental Research Funds for the Central Universities grant number

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3