Dynamic Prediction Model for Progressive Surface Subsidence Based on MMF Time Function

Author:

Zhou Bang1ORCID,Yan Yueguan1ORCID,Kang Jianrong2

Affiliation:

1. College of Geoscience and Surveying Engineering, China University of Mining & Technology, Beijing 100083, China

2. School of Geography, Geomatics and Planning, Jiangsu Normal University, Xuzhou 221116, China

Abstract

It is imperative to timely and accurately predict the progressive surface subsidence caused by coal mining in the context of precision coal mining. However, the existing dynamic prediction methods that use time functions still have limitations, especially in the description of the moments of initiation and maximum subsidence velocity, which hinder their wide application. In this study, we proposed the MMF (Morgan–Mercer–Flodin) time function for predicting progressive surface subsidence based on the model assumptions and formula derivations. MMF time function can resolve the limitations in the description of the moments of initiation and maximum subsidence velocity perfectly. Afterward, we established the dynamic prediction model by combining the probability integral method with the MMF time function. Finally, using the measured subsidence data of working panel 22101 as an example, the accuracy and reliability of the dynamic prediction model was verified. The average RMSE and average relative RMSE (RRMSE) of prediction progressive subsidence using MMF time function are 46.65 mm and 4.63%, respectively. The accuracy is optimal compared with other time functions (for the average RMSE, Logistic time function is 80.57 mm, Gompertz time function is 79.77 mm, and Weibull time function is 90.61 mm; for the average RRMSE, Logistic time function is 7.66%, Gompertz time function is 7.73%, and Weibull time function is 8.62%). The results show that the method proposed in this paper can fully meet the requirements of practical engineering applications, achieve accurate dynamic prediction during the coal mining process, and provide good guidance for surface deformation and building protection.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference44 articles.

1. A leaning historical monument formed by underground mining effect: An example from Czech Republic;Yilmaz;Eng. Geol.,2012

2. Negative externalities of high-intensity mining and disaster prevention technology in China;Bai;B Eng. Geol. Environ.,2019

3. Subsidence versus natural landslides when dealing with property damage liabilities in underground coal mines;Int. J. Rock. Mech. Min.,2020

4. Deng, K., Tan, Z., Jiang, Y., Dai, H., and Xu, L. (2014). Deformation Monitoring and Mining Subsidence Engineering, China University of Mining and Technology Press.

5. Evaluation of ground movement and damage to structures from Chinese coal mining using a new GIS coupling model;Djamaluddin;Int. J. Rock Mech. Min. Sci.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3