Synergistic Use of UAV and USV Data and Petrographic Analyses for the Investigation of Beachrock Formations: A Case Study from Syros Island, Aegean Sea, Greece

Author:

Nikolakopoulos Konstantinos,Lampropoulou Paraskevi,Fakiris EliasORCID,Sardelianos Dimitris,Papatheodorou George

Abstract

Up until the last ten years, remote sensing data and especially high-resolution satellite data and airphotos were mainly used in shallow water mapping. The evolution and low cost of unmanned aerial vehicles (UAVs) provides a new tool for coastal area monitoring. This paper presents the synergistic use of a small commercial UAV and an unmanned surface vehicle (USV) for beachrock mapping in Syros Island, Greece. RGB images collected with a quadcopter were processed using Structure from Motion (SFM) photogrammetry in order to create digital surface models (DSMs) and orthophotos of the coastline. A beachrock lying in shallow waters was detected and mapped using the UAV derived products. At the same time, a USV equipped with a compact side scan sonar (SSS) and bathymetric sonar system, provided the shape of the beachrock by mosaicking the backscatter strength of the SSS. In order to evaluate the results of the UAV and USV data derivatives, the beachrock perimeter and its depth were also mapped using a differential global navigation satellite system (GNSS) receiver. During the fieldwork, samples from the beachrock were collected and analyzed in the laboratory. The mineralogical composition of the bulk samples was determined by powder X-ray diffraction (XRD). Further petrographic study was also performed by petrographic polarizing microscope, macroscope, and scanning electron microscopy (SEM). Beachrock samples are classified as fine to medium grain sandstones and conglomerates. The mineral compositions of their grains and lithoclasts reflect the bedrocks of Syros Island (mainly metamorphic rocks) while a micritic high-Mg calcite constitutes the cement of these rocks.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3