Abstract
Reactively synthesized porous Ti3SiC2 with different pore sizes was prepared using TiH2, Si and graphite powders as starting materials. The effect of pore size on the flexural stress–strain relationship, bending strength and flexural elastic modulus were investigated. The results show that the synthesized porous Ti3SiC2 intermetallic compounds have a characteristic of a high-purity MAX phase with typical laminate microstructure. When the average pore size decreases from 21.8 to 2.1 μm, the volume content of Ti3SiC2 phase ranges from 96.9% to 99.6%, and the porosity is in the range of 49.9% to 54.1%. The flexural stress–strain curves of porous Ti3SiC2 show a characteristic of two stages of elastic deformation and fracture. The flexural modulus is in the range of 13 to 70 GPa, which increases rapidly with further decrease of the pore size. A relation similar to the Hall–Petch equation between the mechanical property and the pore size was investigated for the porous material.
Funder
National Natural Science Foundation of China
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献