Reactively Synthesized Porous Ti3SiC2 Compound and Its Mechanical Properties with Different Apertures

Author:

Jiang YaoORCID,Liu XinliORCID,Gao Haiyan,He Yuehui

Abstract

Reactively synthesized porous Ti3SiC2 with different pore sizes was prepared using TiH2, Si and graphite powders as starting materials. The effect of pore size on the flexural stress–strain relationship, bending strength and flexural elastic modulus were investigated. The results show that the synthesized porous Ti3SiC2 intermetallic compounds have a characteristic of a high-purity MAX phase with typical laminate microstructure. When the average pore size decreases from 21.8 to 2.1 μm, the volume content of Ti3SiC2 phase ranges from 96.9% to 99.6%, and the porosity is in the range of 49.9% to 54.1%. The flexural stress–strain curves of porous Ti3SiC2 show a characteristic of two stages of elastic deformation and fracture. The flexural modulus is in the range of 13 to 70 GPa, which increases rapidly with further decrease of the pore size. A relation similar to the Hall–Petch equation between the mechanical property and the pore size was investigated for the porous material.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3