Thermal Performance of Alginate Concrete Reinforced with Basalt Fiber

Author:

Mohammadyan-Yasouj Seyed EsmaeilORCID,Abbastabar Ahangar HosseinORCID,Ahevani Oskoei Narges,Shokravi HoofarORCID,Rahimian Koloor Seyed SaeidORCID,Petrů MichalORCID

Abstract

The sustainability of reinforced concrete structures is of high importance for practitioners and researchers, particularly in harsh environments and under extreme operating conditions. Buildings and tunnels are of the places that most of the fire cases take place. The use of fiber in concrete composite acts as crack arrestors to resist the development of cracks and enhance the performance of reinforced concrete structures subjected to elevated temperature. Basalt fiber is a low-carbon footprint green product obtained from the raw material of basalt which is created by the solidification of lava. It is a sustainable fiber choice for reinforcing concrete composite due to the less consumed energy in the production phase and not using chemical additives in their production. On the other hand, alginate is a natural anionic polymer acquired from cell walls of brown seaweed that can enhance the properties of composites due to its advantage as a hydrophilic gelling material. This paper investigates the thermal performance of alginate concrete reinforced with basalt fiber. For that purpose, an extensive literature review was carried out then two experimental phases for mix design and to investigate the compressive strength of samples at a temperature range of 100–180 °C were conducted. The results show that the addition of basalt fiber (BF) and/or alginate may slightly decrease the compressive strength compared to the control concrete under room temperature, but it leads to control decreasing compressive strength during exposure to a high temperature range of 100–180 °C. Moreover, it can be seen that temperature raise influences the rate of strength growth in alginate basalt fiber reinforced concrete.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3