Role of YSZ Particles on Microstructural, Wear, and Corrosion Behavior of Al-15%Mg2Si Hybrid Composite for Marine Applications

Author:

Ghandvar Hamidreza1,Jabbar Mostafa Abbas2ORCID,Petrů Michal3ORCID,Bakar Tuty Asma Abu4,Ler Lim Jia4,Rahimian Koloor Seyed Saeid56ORCID

Affiliation:

1. Department of Chemical and Materials Engineering, New Uzbekistan University, Mastaqillik Ave. 54, Tashkent 100007, Uzbekistan

2. Department of Mechanical Techniques, Al-Nasiriya Technical Institute, Southern Technical University, Thi-Qar, Al-Nasiriya 64001, Iraq

3. Faculty of Mechanical Engineering, Technical University of Liberec (TUL), Studentská 1402/2, 46117 Liberec, Czech Republic

4. Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia

5. Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec (TUL), Studentská 1402/2, 46001 Liberec, Czech Republic

6. Institute for Structural Engineering, Department of Civil Engineering and Environmental Sciences, Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, Neubiberg, 85579 Munich, Germany

Abstract

This study aims to investigate the microstructural alterations, mechanical properties, sliding wear behavior, and corrosion properties of Al-15%Mg2Si composites with different contents of yttria-stabilized zirconia (YSZ). Al-15%Mg2Si composites with the different contents of YSZ (0, 3, 6, and 9 wt.%) were fabricated using the stir-casting technique. The fabricated composites were characterized by means of optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy-dispersive spectroscopy (EDS), Vickers hardness tester, linear reciprocating tribometer (LRT), and electrochemical test. The results showed that with the introduction of YSZ particles, the average size of the primary Mg2Si particles in the base composite was 137.78 µm, which was reduced to 88.36 µm after adding 9 wt.% YSZ. The aspect ratio of Mg2Si particles also decreased from 3, for the base composite, to 1.27 in the composite containing 9 wt.% YSZ. Moreover, the hardness value displays an incremental trend from 102.72 HV, as recorded for the base in situ composite, to 126.44 HV in the composite with 9 wt.% YSZ. On top of that, the Al-15%Mg2Si-9%YSZ demonstrates exceptional wear resistance, with the lowest wear rate of 0.46 mm3/km under a 25 N applied load. Its average coefficient of friction (COF) was recorded at 0.42, which is lower than both the 3 and 6 wt.% of YSZ-containing composites. The smoother worn surface in Al-15%Mg2Si-9%YSZ hybrid composite implies the abrasion phenomenon, as dominant wear behavior is milder than the other fabricated composites. On top of that, the Al-15%Mg2Si-9%YSZ also possesses optimum corrosion resistance. The corrosion rate is 0.080 mmpy, comparable to the 0.164 mmpy rate obtained in the in situ composite.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3