Author:
Lin Yakai,Tang Yuanhui,Wang Lin,Wang Xiaolin
Abstract
The non-isothermal crystallization behavior of poly(vinylidene fluoride) (PVDF) in dialkyl phthalate diluents during the thermally induced phase separation (TIPS) process was investigated by differential scanning calorimetry (DSC) at various cooling rates. Dialkyl phthalates with different alkyl chain-length, namely dimethyl phthalate (DMP), diethyl phthalate (DEP) and dibutyl phthalate (DBP), were used as the diluent. The effects of alkyl chain-length of dialkyl phthalate and cooling rate on the non-isothermal crystallization behavior as implied by the Avrami analysis modified by Jeziorny and Mo’s analysis were determined. The values of half-time, t1/2, and the parameters Zc and F(t), which characterized the kinetics of non-isothermal crystallization, showed that the crystallization rate increased with the increase of the alkyl chain-length of dialkyl phthalate due to the lower compatibility between PVDF and dialkyl phthalate. Moreover, the alkyl chain-length of dialkyl phthalate also has a great impact on the compact spherulitic structure of PVDF membranes prepared from different PVDF/dialkyl phthalate blends. With the decrease of the alkyl chain-length of dialkyl phthalate, the number of spherulites increased and the size of spherulites became smaller. This research thus not only proves the effects of alkyl chain-length of dialkyl phthalate on the non-isothermal crystallization behavior of PVDF, but also provides a systematic strategy to evaluate a single diluent during the TIPS process.
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献