Microstructure Heredity of Inconel 718 Nickel-Based Superalloy during Preheating and Following Deformation

Author:

Wang Jianguo,Liu Dong,Ding Xiao,Wang Haiping,Wang Hai,Chen Jingqing,Yang Yanhui

Abstract

Preheating and compression tests of Inconel 718 superalloy double cone specimens were carried out to investigate the microstructure heredity during hot working. Optical microscopy, scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM) were used to characterize the microstructure evolution. The results show that intense microstructure heredity can be found at the temperature 960~990 °C. During the preheating process, δ phase precipitation or grain growth could increase the fraction of high angle grain boundary (HAGBs) and Σ3n boundaries. Otherwise, the generation or spread of annealing twin could increase the fraction of LAGBs, Volume fraction of recrystallized grains was evaluated at the whole hot working process. At the temperature of 960~990 °C, the volume fraction of recrystallized grains increases with effective strain increasing. At the super solution temperature of δ phase, the volume fraction of recrystallized grains decreases and then increases with the increase of the effective strain. The unimodal grain size distribution and fully recrystallized grains can be obtained at low strains at 960~990 °C. The twin boundary length fraction of deformed specimens is always lower than that of preheated ones. Discontinuous dynamic recrystallization (DDRX) was considered as the dominant nucleation mechanism, and continuous dynamic recrystallization (CDRX) was strengthened with the increasing grain size. Twin introduced deformation will be the main deformation mode for alloy 718 with larger grain.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3