Thermal Deformation Characteristics and Dynamic Recrystallization Mechanism of Incoloy 800H Alloy under Different Deformations

Author:

Jia Zhi12ORCID,Zhang Pengfei12,Wang Huifang12,Ji Jinjin123,Wang Tong12,Wang Yanjiang12,Wang Xuming4

Affiliation:

1. State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals Lanzhou University of Technology Lanzhou 730050 China

2. School of Material Science and Engineering Lanzhou University of Technology Lanzhou 730050 China

3. School of Materials Engineering Lanzhou Institute of Technology Lanzhou 730050 China

4. LS Casting & Forging Lanzhou Lanshi Group Co., Ltd. Lanzhou 730300 China

Abstract

Incoloy 800H alloy has excellent high‐temperature mechanical properties and broad application prospects. However, the dynamic recrystallization (DRX) behavior of this alloy at different deformations has been little studied. The thermal deformation characteristics and DRX mechanisms of Incoloy 800H alloy are studied by thermal compression tests. Quantitative analysis of grain size, DRX fraction, misorientation distribution, and twin boundaries under different deformation degrees is conducted using electron‐backscattered diffraction. Furthermore, the evolution characteristics of dislocations and grains are observed through transmission electron microscopy. It is found that the proportion of DRX improves with increasing deformation significantly. In the DRX process, discontinuous DRX (DDRX) is the main nucleation mechanism, while continuous DRX (CDRX) serves as an auxiliary nucleation mechanism. As the deformation increases, the CDRX + DDRX mechanisms can also be observed simultaneously in the high‐density dislocation region near the grain boundary. In addition, the ratio of ∑3 boundaries first decreases and then increases as the deformation increases. The initial twins gradually disappear due to the increase in deformation, and new twins are formed within the DRX grains. Twins can promote grain boundary bulging, provide more nucleation sites for DRX, and have a significant promoting effect on DRX.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3