In Situ TEM Crystallization of Amorphous Iron Particles

Author:

Falqui AndreaORCID,Loche DaniloORCID,Casu AlbertoORCID

Abstract

Even though sub-micron and nano-sized iron particles generally display single or polycrystalline structures, a growing interest has also been dedicated to the class of amorphous ones, whose absence of a crystal structure is capable of modifying their physical properties. Among the several routes so far described to prepare amorphous iron particles, we report here about the crystallization of those prepared by chemical reduction of Fe3+ ions using NaBH4, with sizes ranging between 80 and 200 nm and showing a high stability against oxidation. Their crystallization was investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD), and in situ heating transmission electron microscopy (TEM). The latter technique was performed by the combined use of electron diffraction of a selected sample area, and bright and dark field TEM imaging, and allowed determining that the crystallization turns the starting amorphous particles into polycrystalline α-Fe ones. Also, under the high vacuum of the TEM column, the crystallization temperature of the particles shifted to 550 °C from the 465 °C, previously observed by DSC and XRD under 105 Pa of Ar. This indicates the pivotal role of the external pressure in influencing the starting point of phase transition. Conversely, upon both the DSC/XRD pressure and the TEM vacuum conditions, the mean size of the crystal domains increases as a consequence of further thermal increase, even if with some pressure-related differences.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3