Author:
Liu Pengpeng,Guo Yawen,Wu Yihong,Chen Junyan,Yang Yabin
Abstract
For the additive manufacturing (AM) of metal objects, the powder-based fusion (PBF) method is routinely utilized to fabricate macroscale parts. On the other hand, electrochemical additive manufacturing (ECAM), in which metallic structures are deposited through the electrochemical reduction of metal ions, is a promising technique for producing micro- and nanoscale objects. However, a gap exists in terms of fabricating mesoscale objects within the current AM techniques. The PBF method is limited by fabrication precision due to pronounced residual stresses, and most current ECAM systems are difficult to scale up to print mesoscale objects. In the present paper, the novel design of a low-cost ECAM 3D printer based on a microfluidic system is proposed for fabricating mesoscale metal parts. The meniscus-guided electrodeposition approach is utilized, in which a meniscus is formed between the print head and substrate, and electrodeposition is confined within the meniscus. A 3D object is fabricated by the meniscus moving with the print head according to the programmed pattern and the material subsequently being deposited at the designated locations. The key to the proposed design is to maintain a mesoscale meniscus, which normally cannot be sustained by the electrolyte surface tension with a print nozzle having a mesoscale diameter. Therefore, a microfluidic system, called the fountain pen feed system, constituting a semi-open main channel and comb structure, was designed to maintain a mesoscale meniscus throughout the printing process. Two materials, copper and nickel, with various geometric shapes were attempted to print by the proposed ECAM system, and, during the printing process, both fluid leaking and meniscus breaking were completely prevented. Free standing tilted copper pillars with controlled angles were printed to show the ability of the proposed design in fabricating 3D structures. A copper circuit was also printed on a non-conductive substrate to demonstrate a possible application of the proposed ECAM system in the fabrication of functional electronics.
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献