Experimental Analysis of Polycaprolactone High-Resolution Fused Deposition Manufacturing-Based Electric Field-Driven Jet Deposition

Author:

Chao YanpuORCID,Yi HaoORCID,Cao Fulai,Lu Shuai,Ma Lianhui

Abstract

Polycaprolactone (PCL) scaffolds have been widely used in biological manufacturing engineering. With the expansion of the PCL application field, the manufacture of high-resolution complex microstructure PCL scaffolds is becoming a technical challenge. In this paper, a novel PCL high-resolution fused deposition 3D printing based on electric field-driven (EFD) jet deposition is proposed to manufacture PCL porous scaffold structures. The process principle of continuous cone-jet printing mode was analyzed, and an experimental system was constructed based on an electric field driven jet to carry out PCL printing experiments. The experimental studies of PCL-fused deposition under different gas pressures, electric field voltages, motion velocities and deposition heights were carried out. Analysis of the experimental results shows that there is an effective range of deposition height (H) to realize stable jet printing when the applied voltage is constant. Under the stretching of electric field force and viscous drag force (FD) with increasing movement velocities (Vs) at the same voltage and deposition height, the width of deposition lines was also gradually decreased. The width of the deposition line and the velocity of the deposition platform is approximately a quadratic curve. The bending phenomenon of deposition lines also gradually decreases with the increase of the movement velocities. According to the experiment results, a single layer linear grid structure was printed under the appropriate process parameters, with compact structure, uniform size and good straightness. The experimental results verify that the PCL porous scaffold structure can be accurately printed and manufactured.

Funder

the National Natural Science Foundation of China

Open Research Fund of State Key Laboratory of High Performance Complex Manufacturing

Central South University

Outstanding Young Backbone Teachers projects of Xu chang University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3