Affiliation:
1. School of Information Science and Engineering, University of Jinan, Jinan 250022, China
2. Shandong Provincial Key Laboratory of Network-Based Intelligent Computing, Jinan 250000, China
3. School of Information Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
Abstract
This paper proposes a novel Sea Drift Trajectory Prediction method based on the Quantum Convolutional Long Short-Term Memory (QCNN-LSTM) model. Accurately predicting sea drift trajectories is a challenging task, as they are influenced by various complex factors, such as ocean currents, wind speed, and wave morphology. Therefore, in a complex marine environment, there is a need for more applicable and computationally advanced prediction methods. Our approach combines quantized convolutional neural networks with Long Short-Term Memory networks, utilizing two different input types of prediction to enhance the network’s applicability. By incorporating quantization techniques, we improve the computational power and accuracy of the trajectory prediction. We evaluate our method using sea drift datasets and AUV drift trajectory datasets, comparing it with other commonly used traditional methods. The experimental results demonstrate significant improvements in accuracy and robustness achieved by our proposed Quantum Convolutional Long Short-Term Memory model. Regardless of the input mode employed, the accuracy consistently surpasses 98%. In conclusion, our research provides a new approach for sea drift trajectory prediction, enhancing prediction accuracy and providing valuable insights for marine environmental management and related decision-making. Future research can further explore and optimize this model to have a greater impact on marine prediction and applications.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献