Strengthening Mechanisms in a Medium-Carbon Steel Subjected to Thermo-Mechanical Processing

Author:

Dudko Valeriy12ORCID,Yuzbekova Diana12,Kaibyshev Rustam1

Affiliation:

1. Laboratory of Advanced Steels for Agricultural Machinery, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127550 Moscow, Russia

2. Laboratory of Mechanical Properties of Nanostructured Materials and Superalloys, Belgorod State National Research University, 308015 Belgorod, Russia

Abstract

Strengthening mechanisms were examined in a Fe-0.43C-1.60Si-0.01Mn-1.1Cr-0.95Mo-0.08V-0.05Nb steel exhibiting a yield strength (YS) of 1310 MPa after tempering and 1550 MPa after tempforming. The dislocation strengthening gave a major contribution to the overall YS of the steel in the tempered condition, whereas dispersion strengthening was a major contributor to the YS of the steel in the tempformed condition. High values of dislocation strengthening after tempering were attributed to dislocations composing the lath boundaries. A high density of free dislocations provided nearly the same dislocation strengthening after tempforming. Warm rolling after tempering led to alignment of intercrystallite boundaries along the rolling direction that decreased the interparticle spacing between M23C6 carbides located at these boundaries and thus increased the magnitude of dispersion strengthening. The boundary strengthening contributed to overall YS significantly due to small lath thickness after tempering and nanoscale spacing between lamellar boundaries after tempforming.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3