Drivable Area Detection in Unstructured Environments based on Lightweight Convolutional Neural Network for Autonomous Driving Car

Author:

Yu Yue1,Lu Yanhui1,Wang Pengyu1,Han Yifei1,Xu Tao1,Li Jianhua1

Affiliation:

1. State Key Laboratory of Automotive Simulation and Control, Jilin University, No. 5988, Renmin Street, Changchun 130012, China

Abstract

Road detection technology is an important part of the automatic driving environment perception system. With the development of technology, the situations that automatic driving needs to consider will become broader and more complex. This paper contributes a lightweight convolutional neural network model, incorporating novel convolution and parallel pooling modules, an improved network activation function, and comprehensive training and verification with multiple datasets. The proposed model achieves high accuracy in detecting drivable areas in complex autonomous driving situations while significantly improving real-time performance. In addition, we collect data in the field and create small datasets as reference datasets for testing algorithms. This paper designs relevant experimental scenarios based on the datasets and experimental platforms and conducts simulations and real-world vehicle experiments to verify the effectiveness and stability of the algorithm models and technical solutions. The method achieves an MIoU of 90.19 and a single batch time of 340 ms with a batch size of 8, which substantially reduces the runtime relative to a typical deep network structure like ResNet50.

Funder

Ministry of Science and Technology of the People’s Republic of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3