Study on Earthquake Failure Mechanism and Failure Mode of Cable-Stayed Pipeline Bridge Considering Fluid–Structure Coupling

Author:

Zhu Xiyu1ORCID,Weng Guangyuan2

Affiliation:

1. School of Civil Engineering, Xi’an Shiyou University, Xi’an 710065, China

2. Mechanical Engineering College, Xi’an Shiyou University, Xi’an 710065, China

Abstract

To investigate the failure mode of the cable-stayed pipeline bridge under seismic loading, this study focuses on an oil and gas cable-stayed pipeline bridge as the research subject. A full-scale finite element calculation model of the structural system is established using ANSYS Workbench 14.0 software, considering the stress characteristics and structural properties of the oil and gas pipeline. Additionally, a fluid–structure coupling effect finite element model is developed to account for the influence of medium within the pipeline. The analysis includes evaluating deformation, stress, strain, and other responses of the oil and gas pipeline subjected to seismic waves from different directions. The results indicate that the overall damage in the pipeline is consistent with maximum deformation, stress, and strain, concentrated at both the inlet/outlet ends and side spans; however, variations exist in terms of seismic damage depending on wave directionality. Furthermore, by considering interactions between various components within the oil and gas cable-stayed pipeline bridge’s structural system during strong earthquakes, this study analyzes failure mechanisms caused by the support–pipeline interaction as well as excessive displacement-induced failure patterns in bridge towers. Finally, a proposed failure mode for pipe bridge systems resulting from longitudinal slip between supports and pipelines, along with excessive displacement of bridge towers, is presented.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province, China

Yulin Science and Technology Plan Project

Xi’an Shiyou University Youth Science and Technology Innovation Fund Project

Key Research and Development Program of Shaanxi

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3