Author:
Weng Guangyuan,Xie Qixuan,Xu Chenxi,Zhang Peng,Zhang Xiang
Abstract
With the aim of determining the influence of the fluid–structure coupling dynamic effect of the oil and gas transmission medium and pipeline on the seismic response, an oil pipeline supported by a cable-stayed spanning structure was taken as the study object. Kinetic equations taking into account the action of oil and gas medium were studied, and a finite element model structure considering the additional-mass method and the fluid–structure coupling effect were established separately. In addition, the mechanism of the oil–gas–pipeline coupling action on the seismic response of pipeline structure was analyzed, and the results were obtained. The results show that the pipeline has a minimal seismic response at the abutment location, the seismic response gradually increases along the abutment to the main tower, and the seismic response reach is maximized at about one-fifth of the bridge platform. The seismic response of the oil and gas pipeline model structure using the additional-mass method is generally more significant than that based on the fluid–solid coupled dynamic model; moreover, the maximum displacement response differs by about 24%, and the maximum acceleration response differs by approximately 30%, indicating that the oil and gas medium has a certain viscoelastic damping effect on the seismic response of the oil pipeline, which provides a reference for the seismic response calculation theory and analysis method of cable-stayed spanning oil pipelines.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Reference31 articles.
1. Risk of Earthquake Hazard to Long-distance Oil and Gas Pipelines;Hao;Oil Gas Storage Transp.,2009
2. Analysis of vibration characteristics of pipeline with fluid added mass;Xiao;J. Vib. Shock.,2021
3. Modal characteristics analysis for pipelines considering influence of fluid medium;Li;J. Aerosp. Power,2019
4. Scaling of added mass and added damping of cylindrical rods by means of FSI simulations;Dante;J. Fluids Struct.,2019
5. Study on added mass of a circular curved membrane vibrating in still air;Zhou;Thin-Walled Struct.,2018
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献