Research on the Construction Method of a Training Image Library Based on cDCGAN

Author:

Yao Jianpeng1,Liu Yuyang2,Pan Mao3

Affiliation:

1. China National Oil and Gas Exploration and Development Company Ltd., PetroChina, Beijing 100034, China

2. Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China

3. School of Space and Earth Sciences, Peking University, Beijing 100871, China

Abstract

There is a close relationship between the size and property of a reservoir and the production and capacity. Therefore, in the process of oil and gas field exploration and development, it is of great importance to study the macro distribution of oil–gas reservoirs, the inner structure, the distribution of reservoir parameters, and the dynamic variation of reservoir characteristics. A reservoir model is an important bridge between first-hand geologic data and other results such as ground stress models and fracture models, and the quality of the model can influence the evaluation of the sweet spots, the deployment of a horizontal well, and the optimization of the well network. Reservoir facies modeling and physical parameter modeling are the key points in reservoir characterization and modeling. Deep learning, as an artificial intelligence method, has been shown to be a powerful tool in many fields, such as data fusion, feature extraction, pattern recognition, and nonlinear fitting. Thus, deep learning can be used to characterize the reservoir features in 3D space. In recent years, there have been increasing attempts to apply deep learning in the oil and gas industry, and many scholars have made attempts in logging interpretation, seismic processing and interpretation, geological modeling, and petroleum engineering. Traditional training image construction methods have drawbacks such as low construction efficiency and limited types of sedimentary facies. For this purpose, some of the problems of the current reservoir facies modeling are solved in this paper. This study constructs a method that can quickly generate multiple types of sedimentary facies training images based on deep learning. Based on the features and merits of all kinds of deep learning methods, this paper makes some improvements and optimizations to the conventional reservoir facies modeling. The main outcomes of this thesis are as follows: (a) the construction of a training image library for reservoir facies modeling is realized. (b) the concept model of the typical sedimentary facies domain is used as a key constraint in the training image library. In order to construct a conditional convolutional adversarial network model, One-Hot and Distributed Representation is used to label the dataset. (c) The method is verified and tested with typical sedimentary facies types such as fluvial and delta. The results show that this method can generate six kinds of non-homogeneous and homogeneous training images that are almost identical to the target sedimentary facies in terms of generation quality. In terms of generating result formats, compared to the cDCGAN training image generation method, traditional methods took 31.5 and 9 times longer. In terms of generating result formats, cDCGAN can generate more formats than traditional methods. Furthermore, the method can store and rapidly generate the training image library of the typical sedimentary facies model of various types and styles in terms of generation efficiency.

Funder

Project of R&D Department of Petrochina

Innovation fund of Petrochina

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3