An Approach for Predicting the Effective Stress Field in Low-Permeability Reservoirs Based on Reservoir-Geomechanics Coupling

Author:

Liu Yuyang,Zhang Xiaowei,Guo WeiORCID,Kang Lixia,Yu Rongze,Sun Yuping

Abstract

Low-permeability reservoirs are important to the future growth of oil and gas reserves and production in China. Predicting the effective stress, σe, in reservoirs is vitally important due to its considerable impact on reservoir development through hydraulic fracturing. This paper presents methods for predicting the σe field in ultralow-permeability reservoirs through reservoir–geomechanics coupling, which involve the simulation and coupling of the tectonic stress σ and pore pressure Pp fields based on three-dimensional (3D) geological models. First, 3D geological models were constructed based on basic data for the oilfield where the reservoir of interest is located. Then, finite element and finite difference simulations were performed to construct the σ and Pp fields, respectively, in the reservoir. Different types of initial σe were coupled based on 3D geological models. Subsequently, a dynamic σe field in the reservoir was established based on oilfield production data in conjunction with the transformation, optimization, and coupling of specific grid property parameters obtained from different numerical methods. Finally, the proposed methods were tested on real-world data acquired from well area X in an oilfield in Shaanxi Province, China. The results show that the proposed methods can be used to establish the σ and Pp fields in a reservoir based on 3D geological models combined with different numerical methods, and subsequently predict the σe value in the reservoir.

Funder

project of R&D Department of Petrochina

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference43 articles.

1. Unconventional Petroleum Geology;Zou,2013

2. Reservoir Characterization II;Lake,1991

3. Unconventional Oil and Gas Exploration and Development;Sun,2011

4. New advance in unconventional petroleum exploration and research in China;Zou;Bull. Mineral. Petrol. Geochem.,2012

5. Rock-type classification based on Minkowski functionals and K-means cluster analysis;Yang;Sci. Technol. Eng.,2017

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3