Speaker Recognition Based on Dung Beetle Optimized CNN

Author:

Guo Xinhua1,Qin Xiao1,Zhang Qing1,Zhang Yuanhuai1,Wang Pan2ORCID,Fan Zhun34

Affiliation:

1. School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China

2. School of Automation, Wuhan University of Technology, Wuhan 430070, China

3. Department of Electronic Engineering, Shantou University, Shantou 515063, China

4. Key Lab of Digital Signal and Image Processing of Guangdong Province, Shantou 515063, China

Abstract

Speaker recognition methods based on convolutional neural networks (CNN) have been widely used in the security field and smart wearable devices. However, the traditional CNN has many hyperparameters that are difficult to determine, making the model easily fall into local optimum or even fail to converge during the training process. Intelligent algorithms such as particle swarm optimization and genetic algorithms are used to solve the above problems. However, these algorithms perform poorly compared to the current emerging meta-heuristic algorithms. In this study, the dung beetle optimized convolution neural network (DBO-CNN) is proposed to identify the speakers for the first time, which is helpful in finding suitable hyperparameters for training. By testing the dataset of 50 people, it was demonstrated that the accuracy of the model was significantly improved by using this approach. Compared with the traditional CNN and CNN optimized by other intelligent algorithms, the average accuracy of DBO-CNN has increased by 1.22~4.39% and reached 97.93%.

Funder

Key Lab of Digital Signal and Image Processing of Guangdong Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3