Affiliation:
1. School of Mechanical and Electrical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
2. Institute of Bio-Inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
3. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
Abstract
The Dung Beetle Optimization (DBO) algorithm is a powerful metaheuristic algorithm that is widely used for optimization problems. However, the DBO algorithm has limitations in balancing global exploration and local exploitation capabilities, often leading to getting stuck in local optima. To overcome these limitations and address global optimization problems, this study introduces the Multi-Strategy and Improved DBO (MSIDBO) Algorithm. The MSIDBO algorithm incorporates several advanced computational techniques to enhance its performance. Firstly, it introduces a random reverse learning strategy to improve population diversity and mitigate early convergence or local stagnation issues present in the DBO algorithm. Additionally, a fitness-distance balancing strategy is employed to better manage the trade-off between diversity and convergence within the population. Furthermore, the algorithm utilizes a spiral foraging strategy to enhance precision, promote strong exploratory capabilities, and prevent being trapped in local optima. To further enhance the global search ability and particle utilization of the MSIDBO algorithm, it combines the Optimal Dimension-Wise Gaussian Mutation strategy. By minimizing premature convergence, population diversity is increased, and the convergence of the algorithm is accelerated. This expansion of the search space reduces the likelihood of being trapped in local optima during the evolutionary process. To demonstrate the effectiveness of the MSIDBO algorithm, extensive experiments are conducted using benchmark test functions, comparing its performance against other well-known metaheuristic algorithms. The results highlight the feasibility and superiority of MSIDBO in solving optimization problems. Moreover, the MSIDBO algorithm is applied to path planning simulation experiments to showcase its practical application potential. A comparison with the DBO algorithm shows that MSIDBO generates shorter and faster paths, effectively addressing real-world application problems.
Funder
National Natural Science Foundation of China
Natural Science Foundation of the Jiangsu Higher Education Institutions of China
Xuzhou University of Technology
Jiangsu Industry University
National Defense Basic Scientific Research Project
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献