Improving GNSS Landslide Monitoring with the Use of Low-Cost MEMS Accelerometers

Author:

Cina AlbertoORCID,Manzino Ambrogio Maria,Bendea Iosif Horea

Abstract

Observation and monitoring of landslides and infrastructure is a very important basis for land planning, human activities, and safety. Geomatic techniques for deformation monitoring have usually involved GNSS and total station measurements or, more generally, expensive geodetic instruments, but other techniques, such as SAR (Synthetic Aperture Radar), can be efficiently applied. Using low-cost sensors could be an interesting alternative solution if the accuracy requirements can be satisfied. This paper shows the results obtained for tilt measurements using MEMS accelerometers, which were combined with mass-market GNSS sensors for monitoring five sites located on landslides. The use of a MEMS-like inclinometer requires an important calibration process to remove bias and improve the solution’s accuracy. In this paper, we explain the MEMS calibration procedure employed, with a simple and cheap solution. The results indicate that with a simple calibration, it is possible to improve measurement accuracy by one order of magnitude, reaching an angular accuracy of a few hundredths of a degree, verified by an independent technique.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3