Abstract
The installation of offshore wind farms poses particular challenges due to expensive resources and quickly changing weather conditions. Model-based decision-support systems are required to achieve an efficient installation. In the literature, there exist several models for scheduling offshore operations, which focus on vessels but neglect the influence of resource restrictions at the base port and uncertainties involved with weather predictions. This article proposes a Mixed-Integer Linear Programming model for the scheduling of installation activities, which handles several installation vessels as well as restrictions about available cargo bridges at the port. Additionally, the article explains how this model can be combined with a Model Predictive Control scheme to provide decision support for the scheduling of offshore installation operations. The article presents numerical studies of the effects induced by resource restrictions and of different parametrizations for this approach. Results show that even small planning windows, paired with comparably low computational times, achieve reasonably good results. Moreover, the results show that an increase in vessels comes at diminishing returns concerning the installation efficiency. Therefore, the results indicate that available good-weather windows primarily limit efficiency.
Funder
Deutsche Forschungsgemeinschaft
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献