A Crew Scheduling Model to Incrementally Optimize Workforce Assignments for Offshore Wind Farm Constructions

Author:

Rippel DanielORCID,Foroushani Fatemeh AbasianORCID,Lütjen MichaelORCID,Freitag MichaelORCID

Abstract

In the literature, different authors attribute between 15% to 30% of a wind farm’s costs to logistics during the installation, e.g., for vessels or personnel. Currently, there exist only a few approaches for crew scheduling in the offshore area. However, current approaches only satisfy subsets of the offshore construction area’s specific terms and conditions. This article first presents a literature review to identify different constraints imposed on crew scheduling for offshore installations. Afterward, it presents a new Mixed-Integer Linear Model that satisfies these crew scheduling constraints and couples it with a scheduling approach using a Model Predictive Control scheme to include weather dynamics. The evaluation of this model shows reliable scheduling of persons/teams given weather-dependent operations. Compared to a conventionally assumed full staffing of vessels and the port, the model decreases the required crews by approximately 50%. Moreover, the proposed model shows good runtime behavior, obtaining optimal solutions for realistic scenarios in under an hour.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference38 articles.

1. Renewables 2021 Global Status Report https://www.ren21.net/reports/global-status-report/

2. Guide to an Offshore Wind Farm https://bvgassociates.com/publications/

3. Status, plans and technologies for offshore wind turbines in Europe and North America

4. Commercial Proof of Innovative Offshore Wind Installation Concepts Using Ecn Install Tool;Dewan,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3