Abstract
Nocturnal hypoglycemia (NH) is one of the most challenging events for multiple dose insulin therapy (MDI) in people with type 1 diabetes (T1D). The goal of this study is to design a method to reduce the incidence of NH in people with T1D under MDI therapy, providing a decision-support system and improving confidence toward self-management of the disease considering the dataset used by Bertachi et al. Different machine learning (ML) algorithms, data sources, optimization metrics and mitigation measures to predict and avoid NH events have been studied. In addition, we have designed population and personalized models and studied the generalizability of the models and the influence of physical activity (PA) on them. Obtaining 30 g of rescue carbohydrates (CHO) is the optimal value for preventing NH, so it can be asserted that this is the value with which the time under 70 mg/dL decreases the most, with almost a 35% reduction, while increasing the time in the target range by 1.3%. This study supports the feasibility of using ML techniques to address the prediction of NH in patients with T1D under MDI therapy, using continuous glucose monitoring (CGM) and a PA tracker. The results obtained prove that BG predictions can not only be critical in achieving safer diabetes management, but also assist physicians and patients to make better and safer decisions regarding insulin therapy and their day-to-day lives.
Funder
Spanish Ministry of Science and Innovation
Government of Catalonia
European Regional Development Fund
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献