Detection of SQL Injection Attack Using Machine Learning Techniques: A Systematic Literature Review

Author:

Alghawazi MahaORCID,Alghazzawi DaniyalORCID,Alarifi Suaad

Abstract

An SQL injection attack, usually occur when the attacker(s) modify, delete, read, and copy data from database servers and are among the most damaging of web application attacks. A successful SQL injection attack can affect all aspects of security, including confidentiality, integrity, and data availability. SQL (structured query language) is used to represent queries to database management systems. Detection and deterrence of SQL injection attacks, for which techniques from different areas can be applied to improve the detect ability of the attack, is not a new area of research but it is still relevant. Artificial intelligence and machine learning techniques have been tested and used to control SQL injection attacks, showing promising results. The main contribution of this paper is to cover relevant work related to different machine learning and deep learning models used to detect SQL injection attacks. With this systematic review, we aims to keep researchers up-to-date and contribute to the understanding of the intersection between SQL injection attacks and the artificial intelligence field.

Publisher

MDPI AG

Subject

General Medicine

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SQL injection attack: Detection, prioritization & prevention;Journal of Information Security and Applications;2024-09

2. A Survey on Cyber Security Encounters and AGI-Based Solutions;Advanced Technologies and Societal Change;2024-08-31

3. An Empirical Study on Oculus Virtual Reality Applications: Security and Privacy Perspectives;Proceedings of the IEEE/ACM 46th International Conference on Software Engineering;2024-04-12

4. Deep Learning in Cybersecurity: A Hybrid BERT–LSTM Network for SQL Injection Attack Detection;IET Information Security;2024-04-05

5. Web Attack Intrusion Detection System Using Machine Learning Techniques;International Journal of Online and Biomedical Engineering (iJOE);2024-02-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3