Deep Learning in Cybersecurity: A Hybrid BERT–LSTM Network for SQL Injection Attack Detection

Author:

Liu Yixian1ORCID,Dai Yupeng1ORCID

Affiliation:

1. Xi’an University of Posts and Telecommunications, Xi’an 710000, China

Abstract

In the past decade, cybersecurity has become increasingly significant, driven largely by the increase in cybersecurity threats. Among these threats, SQL injection attacks stand out as a particularly common method of cyber attack. Traditional methods for detecting these attacks mainly rely on manually defined features, making these detection outcomes highly dependent on the precision of feature extraction. Unfortunately, these approaches struggle to adapt to the increasingly sophisticated nature of these attack techniques, thereby necessitating the development of more robust detection strategies. This paper presents a novel deep learning framework that integrates Bidirectional Encoder Representations from Transformers (BERT) and Long Short-Term Memory (LSTM) networks, enhancing the detection of SQL injection attacks. Leveraging the advanced contextual encoding capabilities of BERT and the sequential data processing ability of LSTM networks, the proposed model dynamically extracts word and sentence-level features, subsequently generating embedding vectors that effectively identify malicious SQL query patterns. Experimental results indicate that our method achieves accuracy, precision, recall, and F1 scores of 0.973, 0.963, 0.962, and 0.958, respectively, while ensuring high computational efficiency.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3