Abstract
The high frequency PWM voltage pulses from a two-level six-switch inverter produce a common-mode voltage in an electric machine’s windings, a fraction of which appears on the machine shaft due to electrostatic (capacitive) coupling. When the shaft voltage exceeds the dielectric strength of the bearing lubricating grease, electric discharge machining (EDM) electrostatic discharges occur within the bearing, which can lead to premature failure. According to pulsed dielectric theory, the breakdown voltage across a dielectric increases with an increase in voltage slew rate (dv/dt). Therefore, the faster voltage rise times of wide bandgap devices are expected to produce higher magnitude shaft voltages and EDM bearing currents. This paper presents circuit modeling of EDM currents and compares the shaft voltage and bearing current amplitudes of silicon- and silicon carbide-based PWM inverters through experimental measurements and a statistical analysis using probability density functions. The statistical analysis provides insights regarding the correlation between bearing failure and the number of damage causing discharges over time which is a key step in developing bearing lifetime prediction models.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献