Abstract
In modern electric vehicles, electrical failure has become a critical problem that reduces the lifetime of traction motors. Moreover, traction motors with high-voltage and high-speed systems for a high power density have been aggravating the shaft voltage problems. This study identifies that direct-oil-cooling systems exacerbate this problem. To address this, an analytical method for calculating parasitic capacitance is proposed to determine the effects of cooling oil in a traction motor with a direct-oil-cooling system. Capacitance equivalent circuits are configured based on whether the slot is submerged in the cooling oil. In addition, an electric field decomposition method is applied to analyze the distortion of the electric field by the structure of the conduction parts in the motor. The results indicate that the parasitic capacitances of the traction motor are increased by the influence of the cooling oil resulting in an increase in the shaft voltage.
Funder
Ministry of Trade, Industry and Energy
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献