Application of Slow Pyrolysis to Convert Waste Plastics from a Compost-Reject Stream into Py-Char

Author:

Iwanek (nee Wilczkowska) Ewa M.ORCID,Kirk Donald W.

Abstract

There is growing recognition that the degradation of plastics in the environment is a serious problem. This study investigated and reported on the feasibility of removing end-of-life plastics from circulating in the environment. The specific example focuses on non-recyclable plastics found in a waste diversion program for compostable materials, known as the Green Bin Program. The purpose of this study was to identify and quantify the types of polymers in this stream, as well as to determine if it could be successfully turned into char without separation of its components. The measurements show that polyethylene (72 wt.%), polypropylene (14 wt.%) and polyethylene terephthalate (12 wt.%) are the main constituents of this stream, with minor contributions from polybutylene adipate terephthalate (PBAT), polyvinyl alcohol (PVA), poly methyl methacrylate (PMMA), polystyrene (PS), Nitrile rubber and Nylon. Samples of the as-received waste containing plastics and fibrous material were subjected to a slow pyrolysis process. The yield of the char product depended on the conditions of the pyrolysis and a strong synergistic effect was noted when both the plastic and fibrous materials were co-pyrolyzed. The study of variable pyrolysis conditions, along with DTA-TGA-MS studies on the mechanism of the char formation, indicate that the positive effect results from enhanced interaction of plastics with air, in the presence of fibrous material, during the initial/pre-treatment step.

Funder

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3