Pyrolytic Conversion of Plastic Waste to Value-Added Products and Fuels: A Review

Author:

Papari Sadegh,Bamdad Hanieh,Berruti Franco

Abstract

Plastic production has been rapidly growing across the world and, at the end of their use, many of the plastic products become waste disposed of in landfills or dispersed, causing serious environmental and health issues. From a sustainability point of view, the conversion of plastic waste to fuels or, better yet, to individual monomers, leads to a much greener waste management compared to landfill disposal. In this paper, we systematically review the potential of pyrolysis as an effective thermochemical conversion method for the valorization of plastic waste. Different pyrolysis types, along with the influence of operating conditions, e.g., catalyst types, temperature, vapor residence time, and plastic waste types, on yields, quality, and applications of the cracking plastic products are discussed. The quality of pyrolysis plastic oil, before and after upgrading, is compared to conventional diesel fuel. Plastic oil yields as high as 95 wt.% can be achieved through slow pyrolysis. Plastic oil has a heating value approximately equivalent to that of diesel fuel, i.e., 45 MJ/kg, no sulfur, a very low water and ash content, and an almost neutral pH, making it a promising alternative to conventional petroleum-based fuels. This oil, as-is or after minor modifications, can be readily used in conventional diesel engines. Fast pyrolysis mainly produces wax rather than oil. However, in the presence of a suitable catalyst, waxy products further crack into oil. Wax is an intermediate feedstock and can be used in fluid catalytic cracking (FCC) units to produce fuel or other valuable petrochemical products. Flash pyrolysis of plastic waste, performed at high temperatures, i.e., near 1000 °C, and with very short vapor residence times, i.e., less than 250 ms, can recover up to 50 wt.% ethylene monomers from polyethylene waste. Alternatively, pyrolytic conversion of plastic waste to olefins can be performed in two stages, with the conversion of plastic waste to plastic oil, followed by thermal cracking of oil to monomers in a second stage. The conversion of plastic waste to carbon nanotubes, representing a higher-value product than fuel, is also discussed in detail. The results indicate that up to 25 wt.% of waste plastic can be converted into carbon nanotubes.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

General Materials Science

Cited by 121 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3