Deep Neural Network Prediction of Mechanical Drilling Speed

Author:

Chen Haodong,Jin Yan,Zhang Wandong,Zhang Junfeng,Ma Lei,Lu Yunhu

Abstract

Rate of penetration (ROP) prediction is critical for the optimization of drilling parameters and ROP improvement during drilling. However, it is still challenging to accurately predict ROP based on traditional empirical formula methods. This is usually the case for the development of the Wushi 17-2 oilfield block in the South China Sea. The Liushagang Formation is complex and the ROP is relatively low and difficult to increase. Ordinary data-driven ROP prediction models are not applicable because they do not take into account the complexity of formation conditions. In this work, we characterize the formation with acoustic transit time and build a data-driven ROP prediction model based on a deep neural network approach. By using the exploratory well data of the Wushi 17-2 oilfield for training and testing, the matching degree of the established model with the real data can reach 82%. In addition, we have developed a drilling parameter optimization process based on the ROP prediction model to improve ROP. Through on-site simulation, we found that the process can well meet the construction requirements. The established models and process flow are also applicable to the development of other formations and fields.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference40 articles.

1. Chapter 12—Drilling;Astakhov,2011

2. The "Perfect - Cleaning" Theory of Rotary Drilling

3. A new approach to interpreting rock drillability;Bingham;Tech. Man. Repr. Oil Gas J.,1965

4. A Multiple Regression Approach to Optimal Drilling and Abnormal Pressure Detection

5. Penetration Rate Performance of Roller Cone Bits

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3