Time Series Forest Fire Prediction Based on Improved Transformer

Author:

Miao Xinyu1,Li Jian1,Mu Yunjie1,He Cheng2,Ma Yunfei3,Chen Jie4,Wei Wentao5ORCID,Gao Demin1ORCID

Affiliation:

1. College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China

2. Department of Criminal Investigation, Nanjing Forest Police College, Nanjing 210023, China

3. Institute of Meteorological Sciences of Jilin Province, Changchun 130062, China

4. National Satellite Meteorological Center, Beijing 100081, China

5. School of Design Arts and Media, Nanjing University of Science and Technology, Nanjing 210094, China

Abstract

Forest fires, severe natural disasters causing substantial damage, necessitate accurate predictive modeling to guide preventative measures effectively. This study introduces an enhanced window-based Transformer time series forecasting model aimed at improving the precision of forest fire predictions. Leveraging time series data from 2020 to 2021 in Chongli, a myriad of forest fire influencing factors were ascertained using remote sensing satellite and GIS technologies, with their interrelationships estimated through a multicollinearity test. Given the intricate nature of real-world forest fire prediction tasks, we propose a novel window-based Transformer architecture complemented by a dual time series input strategy premised on 13 influential factors. Subsequently, time series data were incorporated into the model to generate a forest fire risk prediction map in Chongli District. The model’s effectiveness was then evaluated using various metrics, including accuracy (ACC), root mean square error (RMSE), and mean absolute error (MAE), and compared with traditional deep learning methods. Our model demonstrated superior predictive performance (ACC = 91.56%, RMSE = 0.37, MAE = 0.05), harnessing spatial background information efficiently and effectively utilizing the periodicity of forest fire factors. Consequently, the study proves this method to be a novel and potent approach for time series fire prediction.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China Youth Fund Project

National Natural Science Foundation of China

Natural Science Foundation Project Youth Fund Project of Jiangsu

National Natural Science Foundation of Jiangsu

Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3