Towards Modelling Mechanical Shaking Using Potential Energy Surfaces: A Toy Model Analysis

Author:

Odintsov Sergei D.12ORCID,Oikonomou Vasilis K.34ORCID

Affiliation:

1. Institute of Space Sciences (ICE, CSIC), Carrer de Can Magrans s/n, 08193 Barcelona, Spain

2. Catalan Institution for Research and Advanced Studies (ICREA), Passeig Luis Companys, 23, 08010 Barcelona, Spain

3. Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

4. Laboratory of Theoretical Cosmology, Tomsk State University of Control Systems and Radioelectronics (TUSUR), 634050 Tomsk, Russia

Abstract

In this work, we formalize the effect of mechanical shaking by using various forms of an externally exerted force, which may be constant or may be position-dependent, and we examine the changes in the potential energy surfaces that quantify the chemical reaction. We use a simple toy model to model the potential energy surfaces of a chemical reaction, and we study the effect of a constant or position-dependent externally exerted force for various forms of the force. As we demonstrate, the effect of the force can be quite dramatic on the potential energy surfaces, which acquire new stationary points and new Newton trajectories that are distinct from the original ones that were obtained in the absence of mechanochemical effects. We also introduce a new approach to mechanochemical interactions, using a dynamical systems approach for the Newton trajectories. As we show, the dynamical system attractor properties of the trajectories in the phase space are identical to the stationary points of the potential energy surfaces, but the phase space contains much more information regarding the possible evolution of the chemical reaction—information that is quantified by the existence of unstable or saddle fixed points in the phase space. We also discuss how an experimental method for a suitable symmetric liquid solution substance might formalize the effect of shaking via various forms of external force, even in the form of an extended coordinate-dependent force matrix. This approach may experimentally quantify the Epstein effect of shaking in chemical solutions via mechanochemistry methods.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3