Study of the Effects of Changes in Gas Composition as Well as Ambient and Gas Temperature on Errors of Indications of Thermal Gas Meters

Author:

Jaworski JacekORCID,Dudek AdrianORCID

Abstract

Thermal gas meters represent a promising technology for billing customers for gaseous fuels, however, it is essential to ensure that measurement accuracy is maintained in the long term and in a broad range of operating conditions. The effect of hydrogen addition to natural gas will change the physicochemical properties of the mixture of natural gas and hydrogen. Such a mixture will be supplied through the gas system, to consumers, including households, where the amounts of received gas will be metered. The physicochemical properties of hydrogen, including the specific density or viscosity, differ significantly from those of the natural gas components, such as methane, ethane, propane, nitrogen, etc. Therefore, it is of utmost importance to establish the impact of the changes in the gas composition caused by the addition of hydrogen to natural gas on the metrological properties of household gas meters, including thermal gas meters. Furthermore, since household gas meters can be installed outdoors and, taking into account the fact that household gas meters are good heat exchangers, the influence of ambient and gas temperature on the metrological properties of those meters should be investigated. This article reviews a test bench and a testing method concerning errors of thermal gas meter indicators using air and natural gas, including the type containing hydrogen. The indication errors for thermal gas meters using air, natural gas and natural gas with an addition of 2%, 4%, 5%, 10% and 15% hydrogen were determined and then subjected to metrological analysis. Moreover, the test method and test bench are discussed and the results of tests on the impact of ambient and gas temperatures (‒25 °C and 55 °C, respectively) on the errors of indications of thermal gas meters are presented. Conclusions for distribution system operators in terms of gas meter selection were drawn based on the test results.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3