Amputee Fall Risk Classification Using Machine Learning and Smartphone Sensor Data from 2-Minute and 6-Minute Walk Tests

Author:

Juneau Pascale,Baddour NatalieORCID,Burger Helena,Bavec Andrej,Lemaire Edward D.ORCID

Abstract

The 6-min walk test (6MWT) is commonly used to assess a person’s physical mobility and aerobic capacity. However, richer knowledge can be extracted from movement assessments using artificial intelligence (AI) models, such as fall risk status. The 2-min walk test (2MWT) is an alternate assessment for people with reduced mobility who cannot complete the full 6MWT, including some people with lower limb amputations; therefore, this research investigated automated foot strike (FS) detection and fall risk classification using data from a 2MWT. A long short-term memory (LSTM) model was used for automated foot strike detection using retrospective data (n = 80) collected with the Ottawa Hospital Rehabilitation Centre (TOHRC) Walk Test app during a 6-min walk test (6MWT). To identify FS, an LSTM was trained on the entire six minutes of data, then re-trained on the first two minutes of data. The validation set for both models was ground truth FS labels from the first two minutes of data. FS identification with the 6-min model had 99.2% accuracy, 91.7% sensitivity, 99.4% specificity, and 82.7% precision. The 2-min model achieved 98.0% accuracy, 65.0% sensitivity, 99.1% specificity, and 68.6% precision. To classify fall risk, a random forest model was trained on step-based features calculated using manually labeled FS and automated FS identified from the first two minutes of data. Automated FS from the first two minutes of data correctly classified fall risk for 61 of 80 (76.3%) participants; however, <50% of participants who fell within the past six months were correctly classified. This research evaluated a novel method for automated foot strike identification in lower limb amputee populations that can be applied to both 6MWT and 2MWT data to calculate stride parameters. Features calculated using automated FS from two minutes of data could not sufficiently classify fall risk in lower limb amputees.

Funder

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3