Author:
Li Tingting,Lu Jian,Wu Jun,Zhang Zhenhua,Chen Liwei
Abstract
Good water quality is important for normal production processes in industrial aquaculture. However, in situ or real-time monitoring is generally not available for many aquacultural systems due to relatively high monitoring costs. Therefore, it is necessary to predict water quality parameters in industrial aquaculture systems to obtain useful information for managing production activities. This study used back propagation neural network (BPNN), radial basis function neural network (RBFNN), support vector machine (SVM), and least squares support vector machine (LSSVM) to simulate and predict water quality parameters including dissolved oxygen (DO), pH, ammonium-nitrogen (NH3-N), nitrate nitrogen (NO3-N), and nitrite-nitrogen (NO2-N). Published data were used to compare the prediction accuracy of different methods. The correlation coefficients of BPNN, RBFNN, SVM, and LSSVM for predicting DO were 0.60, 0.99, 0.99, and 0.99, respectively. The correlation coefficients of BPNN, RBFNN, SVM, and LSSVM for predicting pH were 0.56, 0.84, 0.99, and 0.57. The correlation coefficients of BPNN, RBFNN, SVM, and LSSVM for predicting NH3-N were 0.28, 0.88, 0.99, and 0.25, respectively. The correlation coefficients of BPNN, RBFNN, SVM, and LSSVM for predicting NO3-N were 0.96, 0.87, 0.99, and 0.87, respectively. The correlation coefficients of BPNN, RBFNN, SVM, and LSSVM predicted NO2-N with correlation coefficients of 0.87, 0.08, 0.99, and 0.75, respectively. SVM obtained the most accurate and stable prediction results, and SVM was used for predicting the water quality parameters of industrial aquaculture systems with groundwater as the source water. The results showed that the SVM achieved the best prediction effect with accuracy of 99% for both published data and measured data from a typical industrial aquaculture system. The SVM model is recommended for simulating and predicting the water quality in industrial aquaculture systems.
Funder
Youth Innovation Team Project for Talent Introduction and Cultivation in Universities of Shandong Province
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry