Author:
M. Iniyan Arasu,S. Subha Rani,K. Thiyagarajan,A. Ahilan
Publisher
Springer Science and Business Media LLC
Reference36 articles.
1. Bostock J, McAndrew B, Richards R, Jauncey K, Telfer T, Lorenzen K, Little D, Ross L, Handisyde N, Gatward I, Corner R (2010) Aquaculture: global status and trends. Philos Trans Royal Soc b: Biol Sci 365(1554):2897–2912
2. Dhal SB, Jungbluth K, Lin R, Sabahi SP, Bagavathiannan M, Braga-Neto U, Kalafatis S (2022a) A machine-learning-based IoT system for optimizing nutrient supply in commercial aquaponic operations. Sensors 22(9):3510
3. Dhal SB, Bagavathiannan M, Braga-Neto U, Kalafatis S (2022b) Nutrient optimization for plant growth in aquaponic irrigation using machine learning for small training datasets. Artif Intel Agricult 6:68–76
4. Dhal SB, Mahanta S, Gumero J, O’Sullivan N, Soetan M, Louis J, Kalafatis S (2023a) An IoT-based data-driven real-time monitoring system for control of heavy metals to ensure optimal lettuce growth in hydroponic set-ups. Sensors 23(1):451
5. Dhal SB, Kalafatis S, Braga-Neto U, Gadepally KC, Landivar-Scott JL, Zhao L, Nowka K, Landivar J, Pal P, Bhandari M (2024) Testing the performance of LSTM and ARIMA models for in-season forecasting of canopy cover (CC) in cotton crops. Remote Sensing 16(11):1906