A Machine-Learning-Based IoT System for Optimizing Nutrient Supply in Commercial Aquaponic Operations

Author:

Dhal Sambandh BhusanORCID,Jungbluth Kyle,Lin Raymond,Sabahi Seyed Pouyan,Bagavathiannan Muthukumar,Braga-Neto Ulisses,Kalafatis Stavros

Abstract

Nutrient regulation in aquaponic environments has been a topic of research for many years. Most studies have focused on appropriate control of nutrients in an aquaponic set-up, but very little research has been conducted on commercial-scale applications. In our model, the input data were sourced on a weekly basis from three commercial aquaponic farms in Southeast Texas over the course of a year. Due to the limited number of data points, dimensionality reduction techniques such as pairwise correlation matrix were used to remove the highly correlated predictors. Feature selection techniques such as the XGBoost classifier and Recursive Feature Elimination with ExtraTreesClassifier were used to rank the features in order of their relative importance. Ammonium and calcium were found to be the top two nutrient predictors, and based on the months in which lettuce was cultivated, the median of these nutrient values from the historical dataset served as the optimal concentration to be maintained in the aquaponic solution to sustain healthy growth of tilapia fish and lettuce plants in a coupled set-up. To accomplish this, Vernier sensors were used to measure the nutrient values and actuator systems were built to dispense the appropriate nutrient into the ecosystem via a closed loop.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference43 articles.

1. Aquaculture: Principles and Practices (No. Ed. 2);Pillay,2005

2. Hydroponics

3. Aquaculture and the Environment;Pillay,2008

4. Hydroponics: A Practical Guide for the Soilless Grower;Jones,2016

5. How-to Hydroponics;Roberto,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3