Eco-Physiological Adaptations of the Xylotrophic Basidiomycetes Fungi to CO2 and O2 Mode in the Woody Habitat

Author:

Mukhin Victor A.ORCID,Diyarova Daria K.ORCID

Abstract

The aim of this research is to study of eco-physiological adaptations of xylotrophic fungi (Basidiomycota, Agaricomycetes) to hypoxia, anoxia and hypercapnia as the main environmental factors that determine the activity of fungi in woody habitat. The study was carried out on seven species of polypore fungi widespread in the preforest-steppe pine-birch forests of the Central Urals, including both white (D. tricolor, D. septentrionalis, F. fomentarius, H. rutilans, T. biforme) and brown (F. betulina, F. pinicola) rot. Their CO2 and O2 gas exchange were analyzed in natural samples of woody substrates (Betula pendula, Pinus sylvestris) and basidiocarps by the chamber method using a CO2/O2 gas analyzer. It was shown that the intensity of O2 gas exchange is positively related to the oxygen concentration but is not very sensitive to a decrease in its content in the woody habitat. Xylotrophic fungi are able to completely exhaust the O2 in the habitat, and this process is linear, indicating that they do not have threshold values for oxygen content. Oxygen consumption is accompanied by an adequate linear increase in CO2 concentration up to 18–19%. At a concentration of 5–10%, carbon dioxide does not affect the gas exchange of xylotrophic fungi and can even enhance it, but at 20% it significantly reduces its intensity. Xylotrophic fungi are resistant to high CO2 concentrations and remain viable at 100% CO2 concentration and are capable of growth under these conditions. In an oxygen-free habitat, anaerobic CO2 emissions are recorded; when O2 appears, its consumption is restored to the level preceding anoxia. Xylotrophic fungi are the specialized group of saprotrophic microaerophilic and capnophilic facultative anaerobes adapted to develop at low oxygen and high carbon dioxide concentration, anoxia.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Reference30 articles.

1. Wood-rotting fungi of North America;Gilbertson;Mycologia,1980

2. Stepanova, N.T., and Mukhin, V.A. (1979). Fundamentals of Wood-Decaying Fungi Ecology, Nauka. (In Russian).

3. On origin of the Hymenomycetes (What are corticioid fungi?);Parmasto;Windahlia,1986

4. The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes;Floudas;Science,2012

5. Henningsson, B. (1965). Physiology a decay activity of the birch conk fungus Polyporus betulinus (Bull.) Fr., Skogshögskolan.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3