Effects of the Degree of Unsaturation of Fatty Acid Esters on Engine Performance and Emission Characteristics

Author:

Lin Cherng-YuanORCID

Abstract

Biodiesel is considered an environmentally friendly alternative to petro-derived diesel. The cetane number indicates the degree of difficulty in the compression-ignition of liquid fuel-powered engines. The allylic position equivalent (APE), which represents the unsaturated degree of fatty acid esters, was one of the key parameters for the cetane number of biodiesel. Due to the significant attributes of APE for biodiesel properties, the impact of APE on engine performance and emission characteristics was investigated in this study. The engine characteristics could be improved by adjusting the biodiesel fuel structure accordingly. A four-stroke and four-cylinder diesel engine accompanied by an engine dynamometer and a gas analyzer were used to derive the optimum blending ratio of the two biodiesels from soybean oil and waste cooking oil. Three fuel samples composed of various proportions of those two biodiesels and ultra-low sulfur diesel (ULSD) were prepared. The amounts of saturated fatty acids and mono-unsaturated fatty acids of the biodiesel made from waste cooking oil were significantly higher than those of the soybean-oil biodiesel by 9.92 wt. % and 28.54 wt. %, respectively. This caused a higher APE of the soybean-oil biodiesel than that of the biodiesel from waste cooking oil. The APE II biodiesel appeared to have the highest APE value (80.68) among those fuel samples. When the engine speed was increased to 1600 rpm, in comparison with the ULSD sample, the APE II biodiesel sample was observed to have lower CO and O2 emissions and engine thermal efficiency by 15.66%, 0.6%, and 9.3%, while having higher CO2 and NOx emissions, exhaust gas temperature, and brake-specific fuel consumption (BSFC) by 2.56%, 13.8%, 8.9 °C, and 16.67%, respectively. Hence, the engine performance and emission characteristics could be enhanced by adequately adjusting the degree of unsaturation of fatty acid esters represented by the APE of biodiesel.

Funder

Ministry of Science and Technology Taiwan

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3