A Lightweight Model for Real-Time Detection of Vehicle Black Smoke

Author:

Chen Ke1,Wang Han2,Zhai Yingchao1

Affiliation:

1. College of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China

2. School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China

Abstract

This paper discusses the application of deep learning technology in recognizing vehicle black smoke in road traffic monitoring videos. The use of massive surveillance video data imposes higher demands on the real-time performance of vehicle black smoke detection models. The YOLOv5s model, known for its excellent single-stage object detection performance, has a complex network structure. Therefore, this study proposes a lightweight real-time detection model for vehicle black smoke, named MGSNet, based on the YOLOv5s framework. The research involved collecting road traffic monitoring video data and creating a custom dataset for vehicle black smoke detection by applying data augmentation techniques such as changing image brightness and contrast. The experiment explored three different lightweight networks, namely ShuffleNetv2, MobileNetv3 and GhostNetv1, to reconstruct the CSPDarknet53 backbone feature extraction network of YOLOv5s. Comparative experimental results indicate that reconstructing the backbone network with MobileNetv3 achieved a better balance between detection accuracy and speed. The introduction of the squeeze excitation attention mechanism and inverted residual structure from MobileNetv3 effectively reduced the complexity of black smoke feature fusion. Simultaneously, a novel convolution module, GSConv, was introduced to enhance the expression capability of black smoke features in the neck network. The combination of depthwise separable convolution and standard convolution in the module further reduced the model’s parameter count. After the improvement, the parameter count of the model is compressed to 1/6 of the YOLOv5s model. The lightweight vehicle black smoke real-time detection network, MGSNet, achieved a detection speed of 44.6 frames per second on the test set, an increase of 18.9 frames per second compared with the YOLOv5s model. The mAP@0.5 still exceeded 95%, meeting the application requirements for real-time and accurate detection of vehicle black smoke.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province Basic Research Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3