Single-Stage Underwater Target Detection Based on Feature Anchor Frame Double Optimization Network

Author:

Ge HuilinORCID,Dai Yuewei,Zhu Zhiyu,Zang Xu

Abstract

Objective: The shallow underwater environment is complex, with problems of color shift, uneven illumination, blurring, and distortion in the imaging process. These scenes are very unfavorable for the reasoning of the detection network. Additionally, typical object identification algorithms struggle to maintain high resilience in underwater environments due to picture domain offset, making underwater object detection problematic. Methods: This paper proposes a single-stage detection method with the double enhancement of anchor boxes and features. The feature context relevance is improved by proposing a composite-connected backbone network. The receptive field enhancement module is introduced to enhance the multi-scale detection capability. Finally, a prediction refinement strategy is proposed, which refines the anchor frame and features through two regressions, solves the problem of feature anchor frame misalignment, and improves the detection performance of the single-stage underwater algorithm. Results: We achieved an effect of 80.2 mAP on the Labeled Fish in the Wild dataset, which saves some computational resources and time while still improving accuracy. On the original basis, UWNet can achieve 2.1 AP accuracy improvement due to the powerful feature extraction function and the critical role of multi-scale functional modules. At an input resolution of 300 × 300, UWNet can provide an accuracy of 32.4 AP. When choosing the number of prediction layers, the accuracy of the four and six prediction layer structures is compared. The experiments show that on the Labeled Fish in the Wild dataset, the six prediction layers are better than the four. Conclusion: The single-stage underwater detection model UWNet proposed in this research has a double anchor frame and feature optimization. By adding three functional modules, the underwater detection of the single-stage detector is enhanced to address the issue that it is simple to miss detection while detecting small underwater targets.

Funder

National Natural Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3