Investigation on the Mechanical Characteristics of the Excavation of a Double-Line Highway Tunnel Underpass Existing Railway Tunnel under the Influence of Dynamic and Static Load

Author:

Li Yifan1,Huang Changfu1,Lu Hongjian2,Mou Chao2

Affiliation:

1. School of Civil and Environment Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. School of Mine Engineering, North China University of Science and Technology, Tangshan 063210, China

Abstract

Research on the excavation mechanical properties of underpass tunnels has already had certain results, but only a few of them consider the effects of dynamic and static loads on the excavation mechanical properties of underground tunnels at the same time; particularly, there is a lack of research investigating double-line highway tunnels with angled underpasses of existing railway tunnels. In this paper, based on the tunnel project of the new double-line Shiqian Highway Tunnel passing under the Hurong Railway with an oblique angle, based on the method of over-advance geological prediction and investigations into the palm face surrounding the rock, the rock degradation caused by dynamic and static loads is quantified using the perturbation system. Additionally, the mechanical parameters of the rock under the influence of dynamic and static load coupling in the influence area of the cross-tunneling project are determined using the Hoek–Brown criterion, and the mechanical characteristics of the excavation of a tunnel under the double-lane highway tunnel passing under the existing railroad are constructed with the mechanical characteristics of the double-lane highway tunnel, taking into consideration the influence of the dynamic and static load coupling in a three-dimensional model. The results show that, in line with the new tunnel rock movement law for the top of the arch sinking, the bottom plate bulging, the side wall outward movement, the height and width of the arch, and the bottom plate arch show an increase with the tunnel excavation, while the side wall rock displacement effect is smaller; the left and right line tunnel disturbed area of the rule of change is similar; the existing tunnel bottom plate displacement is larger than the top plate and the left and right side wall, under the influence of the excavation time step. Typical profile point displacement is mainly determined by the distance from the excavation surface; von Mises stress extremes are observed in the top plate and side walls of the existing tunnel, which occur in the tunnel structure, and there are unloading and pressure-bearing zones in the bottom plate; the new tunnel has the same rock disturbance angle under the four calculation conditions and, based on the displacement control criterion, the excavation method is preferred and the upper and lower step blasting excavation method is recommended.

Funder

Natural Science Foundation of Hebei Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3