Bounding Volume Hierarchy-Assisted Fast SAR Image Simulation Based on Spatial Segmentation

Author:

Wu Ke1,Jin Guowang1,Xiong Xin1,Shi Quanjie2

Affiliation:

1. Institute of Geospatial Information, Information Engineering University, Zhengzhou 450001, China

2. Henan Jingwei Beidou Navigation Technology Co., Ltd., Zhengzhou 450001, China

Abstract

In order to improve the simulation efficiency under the premise of ensuring the fidelity of synthetic aperture radar (SAR) simulation images, we propose a BVH-assisted fast SAR image simulation method based on spatial segmentation. The beam scanning model is established based on RD imaging geometric relation, and the bounding volume hierarchy (BVH) algorithm is used to assist in obtaining the time-varying latticed radiation and shadow areas within the radar beam, combining them with the real-time position of the sensors to complete the simulation of the electromagnetic (EM) wave transmission. The ray tracing algorithm is used to calculate the multiple backscatter fields of EM waves, including various material properties of the target surface. The SAR spatial traversal is adopted to spatially segment the latticed radiation area, and the compute unified device architecture (CUDA) kernel function is designed using the echo matrix cell method to make each cell of the target echo matrix as a subfield of the backscattering field, and the position of the echo matrix cell is traversed to obtain the target backscattering field. The target simulated echo is processed by the range Doppler (RD) imaging algorithm to obtain the SAR-simulated image. The simulation results show that compared with a CPU single-thread simulation, the simulation speed of the proposed method is significantly improved, and the SAR simulation image has high structural similarity with the real image, which fully verifies the effectiveness of the proposed method.

Funder

National Natural Science Foundation of China

Transportation Research Funding Plan of Henan

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3