Ray-Tracing-Assisted SAR Image Simulation under Range Doppler Imaging Geometry

Author:

Li Junjie1,Zhu Gaohao2,Hou Chen2,Zhang Wenya3,Du Kang4,Cheng Chuanxiang3,Wu Ke3

Affiliation:

1. School of Surveying and Urban Spatial Information, Henan University of Urban Construction, Pingdingshan 467036, China

2. Henan Geo-Vision Information Technology Co., Ltd., Zhengzhou 450001, China

3. Institute of Geospatial Information, PLA Information Engineering University, Zhengzhou 450001, China

4. School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454003, China

Abstract

In order to achieve an effective balance between SAR image simulation fidelity and efficiency, we proposed a ray-tracing-assisted SAR image simulation method under range doppler (RD) imaging geometry. This method utilizes the spatial traversal mode of RD imaging geometry to transmit discrete electromagnetic (EM) waves into the SAR radiation area and follows the Nyquist sampling law to set the density of transmitted EM waves to effectively identify the beam radiation area. The ray-tracing algorithm is used to obtain the backscatter amplitude and real-time slant range of the transmitted EM wave, which can effectively record the multiple backscattering among the components of the distributed target so that the backscattering subfields of each component can be correlated. According to the RD condition equation, the backscattering amplitude is assigned to the corresponding range gate, and the three-dimensional (3D) target is mapped into the two-dimensional (2D) SAR slant-range coordinate system, and the SAR target simulated image is directly obtained. Finally, the simulation images of the proposed method are compared qualitatively and quantitatively with those obtained by commercial simulation software, and the effectiveness of the proposed method is verified.

Funder

R&D and Application of Key Technologies for Urban Flood Prevention, Control and Emergency Management Based on BeiDou

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3