Adapting the Segment Anything Model for Volumetric X-ray Data-Sets of Arbitrary Sizes

Author:

Gruber Roland12ORCID,Rüger Steffen1ORCID,Wittenberg Thomas12ORCID

Affiliation:

1. Fraunhofer IIS, Fraunhofer Institute for Integrated Circuits IIS, Division Development Center X-ray Technology, 90768 Fürth, Germany

2. Chair for Visual Computing, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany

Abstract

We propose a new approach for volumetric instance segmentation in X-ray Computed Tomography (CT) data for Non-Destructive Testing (NDT) by combining the Segment Anything Model (SAM) with tile-based Flood Filling Networks (FFN). Our work evaluates the performance of SAM on volumetric NDT data-sets and demonstrates its effectiveness to segment instances in challenging imaging scenarios. We implemented and evaluated techniques to extend the image-based SAM algorithm for the use with volumetric data-sets, enabling the segmentation of three-dimensional objects using FFN’s spatial adaptability. The tile-based approach for SAM leverages FFN’s capabilities to segment objects of any size. We also explore the use of dense prompts to guide SAM in combining segmented tiles for improved segmentation accuracy. Our research indicates the potential of combining SAM with FFN for volumetric instance segmentation tasks, particularly in NDT scenarios and segmenting large entities and objects. While acknowledging remaining limitations, our study provides insights and establishes a foundation for advancements in instance segmentation in NDT scenarios.

Funder

Bavarian Ministry of Economic Affairs, Regional Development and Energy

Publisher

MDPI AG

Reference31 articles.

1. Salamon, M., Reims, N., Böhnel, M., Zerbe, K., Schmitt, M., Uhlmann, N., and Hanke, R. (2019, January 2–4). XXL-CT capabilities for the inspection of modern Electric Vehicles. Proceedings of the International Symposium on Digital Industrial Radiology and Computed Tomography, Fürth, Germany.

2. Mobile High-energy X-ray Radiography for Nondestructive Testing of Cargo Containers;Kolkoori;Mater. Eval.,2015

3. Kolkoori, S., Wrobel, N., Hohendorf, S., and Ewert, U. (2015, January 14–16). High energy X-ray imaging technology for the detection of dangerous materials in air freight containers. Proceedings of the 2015 IEEE International Symposium on Technologies for Homeland Security (HST), Waltham, MA, USA.

4. Exploring Flood Filling Networks for Instance Segmentation of XXL-Volumetric and Bulk Material CT Data;Gruber;J. Nondestruct. Eval.,2021

5. Gruber, R., Reims, N., Hempfer, A., Gerth, S., Wittenberg, T., and Salamon, M. (2024). Fraunhofer EZRT XXL-CT Instance Segmentation Me163, Zenodo.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3